Learning Transferable Reward for Query Object Localization with Policy Adaptation

Tingfeng Li

Shaobo Han

Martin Rengiang Min

Dimitris N. Metaxas

Fully Supervised Object Localization

- class-agnostic
- many classes of labeled data with box annotations for training
- Not transferable, i.e., not easy to add a new class in test time

Query Object Localization

- class-specific, suitable for aerial imagery, robotic manipulation,...
- one class for training
- explicit transferable

Localization by Reinforcement Learning

- States: Rol feature + internal state within RNN
- Actions

- Optimization
 - Policy gradient: $Loss_{policy} = -\log p * reward$
- Reward

$$R = ||b_{t-1} - c|| - ||b_t - c||$$

Prototype embedding

Learn Ordinal Reward

 Ordinal property is not naturally existing in off-theshelf backbones

- X CLIP pre-trained ViT
- X ImageNet pre-trained VGG16
- **X** Faster RCNN pre-trained VGG16
- ✓ Triplet loss trained backbones

Test-time Policy Adaptation

$$R = ||b_{t-1} - c|| - ||b_t - c||$$

Experiments – New Classes/Background

adapt	random patch	clutter	impulse noise	gaussian noise	mean
	97.6 <u>+</u> 0.4	39.6 <u>±</u> 0.5	22.1 <u>+</u> 0.7	66.2 <u>+</u> 2.0	56.4
\checkmark	100.0 <u>+</u> 0.0	97.4 <u>+</u> 0.3	99.9 <u>+</u> 0.1	100.0 <u>+</u> 0.0	99.3

MNIST

Experiments – Ordinal vs. IoU Reward

	training reward	adaptation reward
our method	ordinal embedding	ordinal embedding
iou-based method	loU	ordinal embedding

- state representation learning
- continuous vs. discrete reward
- adaptable *vs.* not adaptable reward

Our agent trained with ordinal reward can adapt to new classes.

Experiments – Adaptation vs. Fine-tuning

	before finetune	before adapt	after finetune	after adapt	
	Faster rcnn	ours	Faster rcnn	ours	
Cat -> horse	20.93	33.32	37.73	51.89	
Cow -> horse	54.79	48.41	68.04	46.80	
Dog -> horse	38.52	41.50	58.01	55.89	
Zebra -> horse	1.12	10.29	6.04	39.22	
Cat -> cow	40.52	50.85	58.55	58.58	
	•••	•••	•••		
Cat -> zebra	10.64	57.58	37.97	70.28	
Cow -> zebra	4.42	39.64	19.64	65.80	
Dog -> zebra	2.29	35.27	15.88	63.91	
Horse -> zebra	7.86	66.82	29.30	72.83	
mean	30.32 <u>+</u> 25.0	39.51 <u>+</u> 17.9	41.17 <u>+</u> 25.3	52.04 <u>+</u> 13.9	

Test-time adaptation beats fine-tuning on target domains

Experiments – Compare to Few-shot Detectors

		target	cat	dog	cow	horse	mean
	Γ	FRCN+fc-full	13.1	3.1	3.7	7.4	6.8
multi-way few-shot		TFA w/ fc	29.1	13.0	5.0	10.7	14.4
		TFA w/cos	28.0	10.3	4.5	8.9	12.9
one-way multi-shot		ours-before	23.0	20.6	24.5	21.2	22.3
explicit adaptation	on	ours-adapt	40.3	33.5	43.1	40.2	39.3
		COCO Dataset					

One-way multi-shot + explicit adaptation performs better

Thanks for watching!

