Learning Transferable Reward for Query
Object Localization with Policy Adaptation
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Fully Supervised Object Localization
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class-agnostic

many classes of
labeled data with box
annotations for training

Not transferable, i.e.,
not easy to add a new
class in test time



Query Object Localization
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Localization by Reinforcement Learning

» States: Rol feature + internal state within RNN
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Learn Ordinal Reward

* Ordinal property is not
naturally existing in off-the-
shelf backbones

X CLIP pre-trained ViT

X ImageNet pre-trained VGG16

X Faster RCNN pre-trained VGG16
Triplet loss trained backbones
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Test-time Policy Adaptation
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Experiments — New Classes/Background
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warbler warbler wren sparrow oriole kingfisher vireo gull CUB

adapt | warbler vireo
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Experiments — Ordinal vs. loU Reward
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Our agent trained with ordinal reward can adapt to new classes.



Experiments — Adaptation vs. Fine-tuning
AR

Faster rcnn ours Faster rcnn ours
Cat -> horse 20.93 33.32 37.73 51.89
Cow -> horse 54.79 48.41 68.04 46.80
Dog -> horse 38.52 41.50 58.01 55.89
Zebra -> horse 1.12 10.29 6.04 39.22
Cat -> cow 40.52 50.85 58.55 58.58
Cat -> zebra 10.64 57.58 37.97 70.28
Cow -> zebra 4.42 39.64 19.64 65.80
Dog -> zebra 2.29 35.27 15.88 63.91
Horse -> zebra 7.86 66.82 29.30 72.83
mean 30.32+25.0 39.51+17.9 41.17+25.3 52.04+13.9

Test-time adaptation beats fine-tuning on target domains



Experiments — Compare to Few-shot Detectors

FRCN+fc-full  13.1

multi-way few-shot TFAw/ fc 29.1 13.0 5.0 10.7 14.4
TFA w/cos 28.0 10.3 4.5 8.9 12.9
: ours-before 23.0 20.6 24.5 21.2 22.3

one-way multi-shot
— > ours-adapt 40.3 33.5 43.1 40.2 39.3

explicit adaptation

COCO Dataset

One-way multi-shot + explicit adaptation performs better



Thanks for watching!



https://openreview.net/pdf?id=92tYQiil17
https://github.com/litingfeng/Localization-by-OrdEmbed

